Introduction to Herbaria

Professor Philip Stevenson
Royal Botanic Gardens, Kew
Natural Resources Institute, University of Greenwich
The Herbarium

• A collection of dried plants
• A store of reference material
• A means of identification
• An arbiter of correct names
• A comprehensive data-bank

“The essential working tool for systematics”
Role of the Herbarium

- Identification
- Taxonomic research
- Data repatriation (including databasing)
- IUCN Conservation ratings
- Voucher specimens
 - Ecological
 - DNA sequencing
 - Phytochemical
Fieldwork and the Herbarium

• Field Identifications difficult
 – Tropical habitats very diverse
 – Family or genus level
 – Floras often not available (tropics especially)
 – Floras bulky

• Ecological fieldwork:
 – Plots, often sterile vouchers, shorter-term

• Taxonomic fieldwork:
 – General collecting, fertile material, long-term
Herbaria around the world

- General or international herbaria
- National and regional
 - E.g., Forest Research Institute Malaysia (FRIM)
 Forest Herbarium, Sarawak (SAR)
 Forest Research Centre, Sabah (SAN)
- University herbaria
- Local botanists = local contacts
- Index Herbariorum
Herbaria from around the world
Field to specimen
The Kew Herbarium

• Approx. 5 million specimens

• Comprehensive collections from all regions

Wing C - 1857 Wing A - 1903
The Kew herbarium contd.

• Specimen arrangement
 – Phylogenetic according to Bentham and Hooker (1880)
 – Re-arrangement with the new wing
 • Mabberley’s Plant Book (new edition)

• Staff ‘arrangement’
 – Regional teams
 – Systematic teams
Regional Teams

- South-East Asia and Pacific
- Drylands Africa
- Africa Wet tropics
- South America
- Temperate

- Name all material except systematic families
- Sorts, identification, field guides, and research
Systematic Teams

- Malpighiales (Euphorbs)
- Myrtaceae (Eucalypts etc.)
- Labiatae/Lamiaceae (Mints)
- Rubiaceae (Coffee)
- Leguminosae (Peas and beans)
- Monocots

- Monographic and phylogenetic research
Digitisation progress

Data repatriation of 4000 specimens from Mexico and Central America

Nearly 50,000 legume specimens on-line

32 legume “species pages”
Insect antifeedant furanocoumarins from *Tetradium daniellii*

Philip C. Stevensona, Monique S.J. Simmondsa, *, Marianne A. Yulea, Nigel C. Veitcha, Geoffrey C. Kitea, Dianne Irwinb, Mike Leggb

aRoyal Botanic Gardens, Richmond, Kew, Surrey, TW9 3AB, UK
bSyngenta, Jealott’s Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK

Received 13 September 2002; received in revised form 10 December 2002
3.2. Plant material

Fruits of *Tetradium daniellii* (Benn.) T.G. Hartley were collected from plants growing at the Royal Botanic Gardens, Kew (Acc. no. 1977-6618). A small fragment of fruit of *T. daniellii* from a herbarium specimen (Forrest 14772) collected in Yunnan, China in September 1917 was also used for extraction and HPLC analysis.

Fig. 1. Structures of furanocoumarins 1-7 isolated from fruits of *Tetradium daniellii*.

Fig. 2. HPLC profile of furanocoumarins from fruits of *Tetradium daniellii*: (a) living material, (b) herbarium specimen.
Comparative study of field and laboratory evaluations of the ethnobotanical *Cassia sophera* L. (Leguminosae) for bioactivity against the storage pests *Callosobruchus maculatus* (F.) (Coleoptera: Bruchidae) and *Sitophilus oryzae* (L.) (Coleoptera: Curculionidae)

Cristina Kestenholza, Philip C. Stevensona,b,*, Steven R. Belmaina

aNatural Resources Institute, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
bJodrell Laboratory, Royal Botanic Gardens, Kew, Surrey TW9 3DS, UK

Accepted 17 November 2005
Some farmers report no activity from *Tephrosia*
Callosobruchus maculatus
Oviposition by fecund bruchid beetles on cowpea seeds treated with powdered plant @1% w/v after 48 h.
Rotenoids from *Tephrosia vogelii* leaves

- Deguelin $R=H$
- Tephrosin $R=\text{OH}$
- Rotenone $R=H$
- 12α-hydroxyrotenone $R=\text{OH}$
- Sarcobilobine
- Toxicarol
Is *T. candida* effective?

Tephrosia vogelii. Controls bruchids

Tephrosia candida. Promoted for soil improvement (*N₂* fixing & green mulch) and (assumed) pest control properties.

(growing at an International Agroforestry Centre)
Oh – its actually T. vogelii

Tephrosia vogelii. Controls bruchids

Tephrosia candida
Promoted for soil improvement (N₂ fixing & green mulch) and (assumed) pest control properties.

Plastid L*trn* region, ITS nuclear DNA sequences & morphology indicate both to be *T. vogelii*
Effect on *C. maculatus* of cowpea treated with acetone extracts of *T. vogelii* chemotypes after 48 h.

Sick insects are alive but paralysed.
LC-MS chromatograms of *T. vogelii* chemotypes 1 & 2

Compound IDs based on 700MHz NMR and Orbitrap HR-EI MS
Flavanones and flavones from *T. vogelii* chemotype 2 (inactive)

- Obovatin 5-methylether
- Deguelin $R=H$
- Tephrosoin $R=OH$
- Yukovanol 5-methylether *
- Z-tephrostachin
- *two of 6 new flavonoid aglycones
- Tephrosovogelone *

Stevenson et al., Phytochemistry (submitted)
Mildbraediodendron excelsum

Herbarium sheet:
Specimen collected by Johannes Mildbraed in 1928

Living specimen:
Grown from seed collected in 1996, Mt. Kupe, Cameroon
LC-UV Analysis of *Mildbraediodendron excelsum*

Living specimen

Mildbraed 10643

ANALYTES: 50% aq. MeOH extracts of leaflet material
MILDBRAEDIN: a flavonol tetraglycoside from *Mildbraediodendron excelsum*

Main phenolic component of:
(1) Herbarium leaf fragment (1928)
(2) Living specimen

Flavonol pentaglycosides of *Cordyla haraka*

Ion current chromatogram

- $m/z = 1033$
- $m/z = 1047$

Electrospray mass spectrum

- $m/z = 287$
- $m/z = 433$
- $m/z = 595$
- $m/z = 741$
- $m/z = 887$
- $m/z = 991$

Relative Abundance

- $t (min)$
- $\lambda (nm)$

D. Du Puy
Distribution of flavonol pentaglycosides in *Cordyla* s.l.

CONCLUSIONS:
- *C. haraka* allied with *C. pinnata* & *C. richardii*
- No support for transfer of *C. haraka* to *Dupuya*

Veitch, Kite & Lewis (2008) *Phytochemistry* 69, 2329